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Abstract. In this paper, we construct a hierarchy of hybrid numerical methods for multi-scale
kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Mo-
rokoff and Nadiga in [15]. Following such a criterion, one can consider hybrid scheme where the
hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even
with more general models, such as the Burnett or super-Burnett systems.
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1. Introduction

Many engineering problems involve fluids in transitional regimes (micro-electro-mechanical sys-
tems, space shuttle reentry, ...). In these cases, the Euler or Navier-Stokes-like fluid description
breaks down, typically due to shocks or boundary layers, and the use of a kinetic model is needed to
describe accurately the system. Nevertheless, this type of mathematical description is computation-
ally expansive to simulate, and it is desirable to use it only locally in space. The goal of this paper
is then to design a so-called hybrid kinetic/fluid schemes with an automatic domain-decomposition
criterion allowing to identify accurately the fluid and kinetic zones. For the sake of computational
efficiency, we will give a decomposition which minimizes the size of the kinetic layer, allowing to
take advantage of the low computational cost of numerical methods for fluid systems. As far as

2010 Mathematics Subject Classification. Primary: 76P05, 82C40, Secondary: 65N08, 65N35 .
Key words and phrases. Boltzmann equation, fluid description, compressible Euler, compressible Navier-Stokes,

Burnett transport coefficients, hybrid numerical method, domain decomposition.

1



2 F. FILBET AND TH. REY

possible, this method will also be non-intrusive for the solvers. More precisely, except for the imple-
mentation of the domain decomposition indicators, it will be independent on the kinetic and fluid
solvers, which won’t necessitate deep modifications.

We are interested in this article in collisional gases, and then we shall consider Boltzmann-like
collisional kinetic equations. More precisely, for a given nonnegative initial condition f0, we will
study a particle distribution function f ε = f ε(t, x, v), for t ≥ 0, x ∈ Ω ⊂ R

dx and v ∈ R
3, solution

to the initial-boundary value problem

(1)





∂f ε

∂t
+ v · ∇xf

ε =
1

ε
Q(f ε),

f ε(0, x, v) = f0(x, v),

where the collision operator Q is a Boltzmann-like operator. The open set Ω is a bounded Lipschitz-
continuous domain of Rdx , which means that the model (1) has to be supplemented with boundary
conditions described later.

We assume that the collision operator fulfills the three following assumptions

(H1) It preserves mass, momentum and kinetic energy:
∫

R3

Q(f)(v) dv = 0,

∫

R3

Q(f)(v) v dv = 0,

∫

R3

Q(f)(v) |v|2 dv = 0;

(H2) It dissipates the Boltzmann entropy (H-theorem):
∫

R3

Q(f)(v) log(f)(v) dv ≤ 0;

(H3) Its equilibria are given by Maxwellian distributions:

Q(f) = 0 ⇔ f = Mρ,u,T :=
ρ

(2πT )3/2
exp

(
−|v − u|2

2T

)
,

where the density, velocity and temperature of the gas ρ, u and T are computed from the
distribution function f as

ρ =

∫

v∈R3

f(v) dv, u =
1

ρ

∫

v∈R3

vf(v) dv, T =
1

3ρ

∫

v∈R3

|u− v|2f(v) dv.

Equation (1) with assumptions (H1)-(H2)-(H3) describes numerous models such as the Boltzmann
equation for elastic collisions or Fokker-Planck-Landau type equations.

The parameter ε > 0 is the dimensionless Knudsen number, that is the ratio between the mean free
path of particles before a collision and the length scale of observation. It measures the rarefaction
of the gas: the gas is in rarefied or kinetic regime if ε ∼ 1 and in dense or fluid regime if ε ≪ 1.
Moreover, according to assumptions (H2)-(H3), when ε → 0, the distribution f ε converges (at
least formally) to a Maxwellian distribution, whose moments are solution to the compressible Euler
system

(2)





∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u + ρT I) = 0R3 ,

∂tE + divx (u (E + ρT )) = 0.

This type of limit provides a “contraction of the kinetic description” [11], the so-called hydrodynamic
limit, which is at the basis of the hybrid methods.

Let us give some examples of operators which are subject to these hypothesis.



A HIERARCHY OF HYBRID NUMERICAL METHODS FOR MULTI-SCALE KINETIC EQUATIONS 3

1.1. The Boltzmann Operator. The Boltzmann equation describes the behavior of a dilute gas
of particles when the only interactions taken into account are binary elastic collisions

QB(f, f)(v) =

∫

R3

∫

S2

B(|v − v∗|, cos θ)
[
f ′
∗f

′ − f∗f
]
dσ dv∗,(3)

where we used the shorthand f = f(v), f∗ = f(v∗), f
′

= f(v′), f
′

∗ = f(v
′

∗). The velocities of the
colliding pairs (v, v∗) and (v′, v′∗) are related by

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a non-negative function which by physical arguments of invariance only
depends on |v − v∗| and cos θ = û · σ, where û = (v − v∗)/|v − v∗|.

Boltzmann’s collision operator has the fundamental properties (H1), (H2) and (H3).

1.2. The BGK Operator. Another well known collision operator which has the properties (H1)-
(H2)-(H3) is the BGK operator [4], and its Ellipsoidal Statistical (ES-BGK) extension [2]. It
consists in replacing the bilinear collision operator QB by a nonlinear relaxation operator, which
match the same hydrodynamic limit than the Boltzmann operator.

To this aim we first define some macroscopic quantities of the particle distribution function f
such as the opposite of the stress tensor

Θf (t, x) =
1

ρf

∫

R3

(v − uf )⊗ (v − uf ) f(t, x, v) dv.

Therefore the translational temperature is related to the stress tensor as Tf = Trace(Θf )/3. We
finally introduce the corrected tensor

Tf (t, x) = [(1− β)Tf I + βΘf ] (t, x),

which can be viewed as a linear combination of the initial stress tensor Θf and of the isotropic stress
tensor Tf I developed by a Maxwellian distribution. The parameter −∞ < β < 1 is used to modify
the value of the Prandtl number through the formula

0 ≤ Pr =
1

1− β
≤ +∞ for β ∈ (−∞ , 1).

The correct Prandtl number for a monoatomic gas of hard spheres is equal to 5/3, namely obtained
here for β = −2/5 whereas the classical BGK operator, obtained for β = 0, has a Prandtl number
equal to 1.

To define the ESBGK operator, we introduce a corrected Gaussian G[f ] defined by

G[f ] = ρf√
det(2π Tf)

exp

(
−
(v − uf )T −1

f (v − uf )

2

)

and the corresponding collision operator is now

(4) QBGK(f) = ν(ρf , Tf ) (G[f ] − f) ,

where ν is the collision frequency from the Boltzmann operator. It can be shown [18] that it depends
only on the kinetic density ρf and temperature Tf .

2. Regime Indicators

There are several different works about hybrid methods in the literature, the largest part relying
on the same domain decomposition technique, introduced by Boyd, Chen and Chandler in [5]. This
paper uses a macroscopic criterion to pass from the hydrodynamic description (easy to compute
numerically, but inaccurate near shocks or boundary layers) to the kinetic one (computationally
expansive but accurate in most of the situations). This criterion is based on the local Knudsen
number of the problem: when this quantity is below a (problem-dependent) threshold, the kinetic
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description is used. The first practical use of this method is due to Kolobov, Arslanbekov, Aristov
et al. [14], by using a discrete velocity model of the Boltzmann equation for the kinetic part, and a
kinetic scheme for the hydrodynamic part. It has been more recently used by Degond and Dimarco
in [7], with a Monte-Carlo solver for solving the kinetic equation and a finite volume method for
the macroscopic ones.

The hydrodynamic breakdown indicator introduced by Tiwari in [19] is also very close to the
previous criterion, as it is based on the viscous and heat fluxes of the Navier-Stokes equation,
through a Grad’s 13-moments expansion. It has been recently used for deterministic solver by
Degond, Dimarco and Mieussens in [8] and by Tiwari, Klar et Hardt in [21, 22]. Alaia and Puppo
also used it with an hybrid deterministic/kinetic solver in [1]. Finally, Dimarco, Mieussens and
Rispoli used in [9] the same ideas to solve the more complex Vlasov-Poisson-BGK system. Another
different approach introduced by Dimarco and Pareschi in [10] consists in decomposing the particle
distribution in a “central” part containing most of the information, solved using a BGK model, and
a Monte Carlo part for the tail, being able to attain any velocity.

To our opinion, the main outcome of these criteria is that they are based on the macroscopic
description of the model, and more precisely on the magnitude of the first spatial derivatives of the
local density, temperature, heat flux and stress tensor. In consequence, they can be wrong in a
situation where the fluid is far from the thermal equilibrium. Let us consider for example the case
of a gas which is distributed in the velocity space as a sum of two Gaussian with non-zero mean,
and which is constant in space:

(5) f(x, v) =
1

2
(M1,u0,1(v) +M1,−u0,1(v)) , ∀x ∈ T, v ∈ R

3,

for e.g. u0 = (1, 0, 1). This distribution, although constant in space, is very far from the thermal
equilibrium given by Maxwellian distributions according to assumption (H3). Nevertheless, both
criteria from [5] or [19] would be equal to 0, since they are based on the spatial derivatives of the
hydrodynamic field, hence detecting an hydrodynamic setting.

We then need criteria in both regimes: one to know when the hydrodynamic description breaks
down, and another one to know when the kinetic description is actually in hydrodynamic regime. Let
us start by introducing some mathematical tools needed for our approach, namely the Chapmann-
Enskog expansion.

2.1. The Chapmann-Enskog Expansion. The criterion we shall use in this article was intro-
duced by Levermore, Morokoff and Nadiga in [15]. It has already been used by Tiwari in [20] for
an hybrid Euler-Boltzmann method using particle methods. It has the main interest to depend on
the closure made for obtaining the hydrodynamic model. Hence, one can consider hybrid scheme
where the hydrodynamic part is given either by the compressible Euler equations, or by compressible
Navier-Stokes, or even with more general models, such as the Burnett or super-Burnett systems,and
we shall take advantage of this to design a hierarchy of models.

Let us consider a solution f ε of the collisional kinetic equation (1). Without any closure, according
to the conservative properties (H1) of the collision operator Q, we have

(6)





∂tρ
ε + divx(ρ

ε uε) = 0,

∂t(ρ
ε uε) + divx

(∫

R3

v ⊗ v f ε(v) dv

)
= 0R3 ,

∂tE
ε + divx

(∫

R3

1

2
|v|2v f ε(v) dv

)
= 0,

where we defined

(ρε,uε, Eε) =

∫

R3

f ε(v)

(
1, v,

|v|2
2

)
dv; T ε =

1

3 ρε

∫

R3

f ε(v) |v − uε|2 dv.
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Now, assuming that the distribution f ε is close to equilibrium thanks to the relaxation property
(H2), we can do formally the Chapman-Enskog expansion

(7) f ε = Mρε,uε,T ε

[
1 + ε g(1) + ε2 g(2) + . . .

]
,

where the fluctuations g(i) for i ≥ 0 designate a function that depends smoothly on the moment
vector (ρε,uε, T ε)⊺ and any finite number of its derivatives with respect to the x-variable at the
same point (t, x), and on the v-variable. According to (H1), it verifies

∫

R3

g(i)(v)

(
1, v,

|v|2
2

)
dv = 0⊺

R5 .

Plugging this expansion into (6), we obtain the more detailed system

(8)





∂tρ
ε + divx(ρ

ε uε) = 0,

∂t(ρ
ε uε) + divx

(
ρεuε ⊗ uε + ρεT ε

(
I + Āε

))
= 0R3 ,

∂tE
ε + divx

(
1

2
ρε|uε|2uε + ρεT ε

(
3 + 2

2
I + Āε

)
uε + ρε(T ε)3/2B̄ε

)
= 0,

where the traceless matrix Āε ∈ M3 and the vector B̄ε ∈ R
3 are given by

(9)





Āε :=
1

ρε

∫

R3

A(V )f ε(v) dv, A(V ) = V ⊗ V − |V |2
3

I,

B̄ε :=
1

ρε

∫

R3

B(V )f ε(v) dv, B(V ) =
1

2

[
|V |2 − (3 + 2)

]
V ,

and where we used the shorthand

V (v) =
v − u√

T
.

Depending on the order in ε of the truncation of the series (7), we will obtain different hydrodynamic
description of the fluid.

2.1.1. Zeroth order: compressible Euler system. At zeroth order with respect to ε, we have f ε =
Mρ,u,T . This distribution is in particular isotropic in v − u and its odd moments with respect to
(v − u) are all equal to zero. Since the matrix Āε is traceless, we then have that

ĀEuler :=
1

ρ

∫

R3

A(V )Mρ,u,T (v) dv = 0M3
.

Moreover, since B̄ε involves odd, centered moments of f ε, we also obtain

B̄Euler :=
1

ρ

∫

R3

B(V )Mρ,u,T (v) dv = 0R3 .

Hence, the moments (ρ,u, T ) are solution to the compressible Euler system (2). We notice in
particular that the Maxwellian distribution in (7) is independent of ε.

2.1.2. First order: compressible Navier-Stokes system. Going to the next order in ε, we plug-in the
expansion (7) in the Boltzmann equation (1). Since the Maxwellian distribution is an equilibrium

of the collision operator (according to (H3)), the fluctuation g(1) is given by

(10) ∂tMρ,u,T + v · ∇xMρ,u,T = LMρ,u,T
g(1) +O(ε),

where (ρ,u, T ) are solution to the compressible Euler system (2)and LM is the linearized1 collision
operator around the Maxwellian distribution.

1Namely the Frechet derivative of the collision operator.
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Besides, we also have

∂tMρ,u,T + v · ∇xMρ,u,T =

Mρ,u,T

[
∂tρ+ v · ∇xρ+

1√
T

(V · ∂tu+ V ⊗ v : ∇xu) +
1

2T

(
|V |2 − 3

)
(∂tT + v · ∇xT )

]
.

Then, using the conservation laws (2) in this equation to replace the time derivatives by only spatial
ones, and dropping the terms of order ε in (10), we find after some computations that

(11) LMρ,u,T
g(1) = Mρ,u,T

[
A(V ) : D(u) + 2B(V ) · ∇x

√
T
]
,

where A, B and V are defined in (9) and the traceless deformation tensor D of u is given by

D(u) = ∇xu+ (∇xu)
⊺ − 2

3
(divx u) I.

Moreover, using the hypothesis (H1) on the conservation laws of the collision operator, it is
possible to show that linear combinations of collisional invariants form exactly the kernel of the
linear operator LMρ,u,T

. In particular, we have the orthonormal family:

kerLMρ,u,T
= Span

{
1

ρ
,
V

ρ
,
1

2ρ

(
|V |2 − 3

)}
.

Using the orthogonality properties of the moments of a Maxwellian distribution, we have that on
L2 (Mρ,u,T ),

A(V ),B(V ) ⊥ kerLMρ,u,T
.

Since the operator LMρ,u,T
is invertible on the orthogonal of its kernel and finally using (11), it

yields

(12) g(1) = L−1
Mρ,u,T

(Mρ,u,T A) : D(u) + 2L−1
Mρ,u,T

(Mρ,u,T B) · ∇x

√
T .

We can then plug this expression into the definition (9) to obtain using some classical symmetry
properties of the collision operator [15] that

(13)





Āε
NS :=

1

ρ

∫

R3

A(V )Mρ,u,T (v)
[
1 + ε g(1)(v)

]
dv = −ε

µ

ρT
D(u),

B̄ε
NS :=

1

ρ

∫

R3

B(V )Mρ,u,T (v)
[
1 + ε g(1)(v)

]
dv = −ε

κ

ρT 3/2
∇xT.

The scalar quantities µ and κ in (13), respectively the viscosity and the thermal conductivity, are
given by

µ := −T

∫

R3

Mρ,u,T (v)A(V ) : L−1
Mρ,u,T

(Mρ,u,T A) (v) dv,

κ := −T

∫

R3

Mρ,u,T (v)B(V ) · L−1
Mρ,u,T

(Mρ,u,T B) (v) dv.

They depend on the collision kernel of the model. For example, for the Boltzmann operator in the
hard sphere case, it can be shown [13] that there exists some positive constants µ0, κ0 such that

µ = µ0

√
T and κ = κ0

√
T .

In the ES-BGK case, we have [18]

µ =
1

1− β

ρT

ν
and κ =

5

2

ρT

ν
.
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Finally, the evolution of the macroscopic quantities at first order with respect to ε is given by
the compressible Navier-Stokes equations

(14)





∂tρ+ divx(ρu) = 0,

∂t(ρu) + divx (ρu⊗ u+ ρT I) = εdivx (µD(u)) ,

∂tE + divx (u (E + ρT )) = εdivx (µD(u) · u+ κ∇xT ) .

Remark 1 . The matrix σ := −µD(u) is sometimes called viscosity tensor and the vector q :=
−κ∇xT is the heat flux.

2.1.3. Second order: Burnett equations. Pushing the expansion (7) at second order in ε, we can
use the same type of argument that for the compressible Navier-Stokes system to obtain another
correction of the compressible Euler equations: the Burnet system. Although this system is ill-posed
[13], the computation of its coefficients is still possible. We have for the BGK case β = 0 [18]:

Āε
Burnett :=

1

ρ

∫

R3

A(V )Mρ,u,T (v)
[
1 + ε g(1)(v) + ε2g(2)(v)

]
dv

= −ε
µ

ρT
D(u)− 2ε2

µ2

ρ2T 2

{
− T

ρ
Hessx(ρ) +

T

ρ2
∇xρ⊗∇xρ−

1

ρ
∇xT ⊗∇xρ

+ (∇xu) (∇xu)
⊺ − 1

3
D(u) divx(u) +

1

T
∇xT ⊗∇xT

}
;(15)

B̄ε
Burnett :=

1

ρ

∫

R3

B(V )Mρ,u,T (v)
[
1 + ε g(1)(v) + ε2g(2)(v)

]
dv

= −ε
κ

ρT 3/2
∇xT − ε2

µ2

ρ2T 5/2

{
+

25

6
(divx u)∇xT

− 5

3
[T divx (∇xu) + (divx u)∇xT + 6 (∇xu)∇xT ]

+
2

ρ
D(u)∇x (ρT ) + 2T divx (D(u)) + 16D(u)∇xT

}
.(16)

2.2. From Fluid to Kinetic: the Moment Realizability Criterion. The matrix Āε and the
vector B̄ε will allow us to define our hydrodynamic break down criterion. Let us set the vector of
the reduced collisional invariants for V = (v − uε)/

√
T ε,

m :=

(
1,V ,

(
2

3

)1/2( |V |2
2

− 3

2

))
.

We then define the so-called moment realizability matrix by setting

(17) M :=
1

ρε

∫

R3

m⊗m f ε(v) dv.

By using the orthogonality properties of the moments of a Maxwellian distribution and (7), we have

M =
1

ρε

∫

Rd




1 V ⊺
(
2
3

)1/2 ( |V |2

2 − 3
2

)

V V ⊗ V
(
2
3

)1/2 ( |V |2

2 − 3
2

)
V

(
2
3

)1/2 ( |V |2

2 − 3
2

) (
2
3

)1/2 ( |V |2

2 − 3
2

)
V ⊺ 2

3

(
|V |2

2 − 3
2

)2


 f ε(v) dv

=




1 0⊺
R3 0

0R3 I + Āε
(
2
3

)1/2
B̄ε

0
(
2
3

)1/2
(B̄ε)⊺ C̄ε


 ,
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where C̄ε is the dimensionless fourth order moment of f ε:

C̄ε :=
2

3ρ

∫

R3

[ |V |2
2

− 3

2

]2
f ε(v) dv.

For the sake of simplicity, let us introduce the change of basis Q by setting

Q :=




1 0⊺
R3 0

0R3 I 0R3

0 −
(
2

3

)2/3 (B̄ε)⊺

C̄ε
1


 .

Then we have the following relation for M :

M = Q−1




1 0⊺
R3 0

0R3 I + Āε − 2

3 C̄ε
B̄ε ⊗ B̄ε 0R3

0 0⊺
R3 C̄ε


Q.

Since C̄ε is a nonnegative quantity and M is by construction a positive definite matrix, the matrix

(18) V := I + Āε − 2

3 C̄ε
B̄ε ⊗ B̄ε

is also a positive definite matrix.
Now from these remarks, let us define a criterion to determine the appropriate model – fluid or

kinetic – to be used.
On the one hand, consider the zeroth order model with respect to ε, that is the compressible

Euler system. If we truncate the expansion at first order in ε, we get that ĀEuler = 0M3
and

B̄Euler = 0R3 . Moreover, we also have in that case C̄ε = 1 and then

VEuler := V1 = I.

On the other hand, consider the first order model, that is, the compressible Navier-Stokes system.
By cutting the Chapman-Enskog expansion (7) at the first order with respect to ε (i.e. Navier-
Stokes order), we can compute explicitly the matrix Vε. We have in this case using the expressions
(13) and by symmetry arguments [15], that C̄ε = 1, hence

(19) VNS := Vε = I − ε
µ

ρT
D (u)− ε2

2

3

κ2

ρ2T 3
∇xT ⊗∇xT,

where (ρ,u, T ) are solution to the Navier-Stokes equations (14).
Hence, we claim that the compressible Euler system is correct when the matrix VNS behaves like

the matrix VEuler = I, that is, it is positive definite and if its eigenvalues are close to 1 or not : The
Euler description of the fluid will be considered incorrect if

(20) |λNS − 1| > η0, ∀λNS ∈ Sp(VNS),

where η0 is a small parameter (here we take η0 = 10−2).
More generally, we denote by f ε

k the kth order truncation of the Chapman-Enskog expansion (7):

(21) f ε
k := Mρ,u,T

[
1 + ε g(1) + ε2 g(2) + . . . + εk g(k)

]
.

For a given truncation (21) of order k, we will say that the fluid model associated is incorrect at
point (t, x) if we have

(22) |λεk − λεk+1 | > η0, ∀λεk ∈ Sp(Vεk), λεk+1 ∈ Sp(Vεk+1).
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2.3. From Kinetic to Fluid. Knowing the full kinetic description of a gas, there exists a large
number of methods [17] to decide how far this gas is from the thermal equilibrium, i.e. the fluid
regime. We decide to use a simple comparison between the kinetic density f ε, solution to the
collisional equation (1) and the truncated Chapman-Enskog distribution f ε

k given by (21), whose
moments match the one of f ε, and whose order k corresponds to the order of the macroscopic model
considered.

Our criterion is then the following: The kinetic description at point (t, x) corresponds to an
hydrodynamic closure of order k if

(23) ‖f ε(t, x, ·) − f ε
k(t, x, ·)‖L1

v
≤ δ0,

where δ0 is a small parameter (we take δ0 = 10−4).

Example. If k = 1 (Compressible Euler setting), this criterion corresponds to the natural one

‖f ε(t, x, ·) −Mε
ρ,u,T (t, x, ·)‖L1 ≤ δ0,

namely to check if the system is locally at the thermodynamic equilibrium or not.

Remark 2 . In particular, if we perform the Chapman-Enskog expansion (7) of f ε, the criterion
(23) corresponds to the fact that the remainder term in this expansion is small in L1 norm, because
it is then given by ∥∥∥∥∥

∑

n>k

εi g(i)(t, x, ·)
∥∥∥∥∥
L1
v

≤ δ0.

Moreover, for numerical purposes, it can be interesting to take an additional criterion on

(24)
∆t

ε
≫ 1,

where ∆t is the time step. Indeed, the relaxation time of equation (1) toward the Maxwellian distri-
bution is of order ε/∆t. Hence for small ε or large time step ∆t the solution is at thermodynamical
equilibrium.

3. Numerical schemes

3.1. Systems of Conservation Laws. In this subsection, we shall focus on the space discretization
of the system of n conservation laws

(25)





∂u

∂t
+ divx F (U) = 0, ∀ (t, x) ∈ R+ ×Ω,

u(0, x) = u0(x),

for a smooth function F : Rn → Mn×dx(R) and a Lipschitz-continuous domain Ω ⊂ R
dx .

Here we apply finite volume schemes using central Lax Friedrichs schemes with slope limiters (see
e.g. Nessyahu and Tadmor [16]).

3.2. ES-BGK Equation. We now focus briefly on the time evolution of the ES-BGK equation

(26)





∂f ε

∂t
+ v · ∇xf

ε =
ν

ε
(G[f ] − f) ,

f ε(0, x, v) = f0(x, v),

We adopt the approach of Filbet and Jin [12], that is we discretize the time using a first order
Implicit-Explicit (IMEX ) scheme. Since the convection term in (26) is not stiff, we treat it explicitly,
and we use an implicit solver only for the stiff source term on the right hand side.
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3.3. Evolving the Variables and Coupling the Equations. We are now interested in evolving
in time the hybrid scheme. Let us consider the case of a fluid closure of order k. At a given time
tn, we denote by Ki a control volume, the space domain Ω = Ωn

f ⊔ Ωn
k is decomposed in

• Fluid cells Ki ⊂ Ωn
f , described by the hydrodynamic fields

Un
i := (ρni ,u

n
i , T

n
i ) ≃ (ρ(tn, xi),u(t

n, xi), T (t
n, xi)) ;

• Kinetic cells Kj ⊂ Ωn
k , described by the particle distribution function

fn
j (v) ≃ f(tn, xj , v), ∀v ∈ R

3.

The evolution of the whole system depends on the type of cell we consider. The algorithm used is
the following:

• In a fluid cell Ki ⊂ Ωn
f , compute the eigenvalues of the reduced moment realizability matrix

Vεk :
– If the criterion (22) is wrong, evolve the fluid equations at point xi with initial condition

Un
i to obtain Un+1

i ;

– In the other case, the regime is no longer fluid but kinetic, then “lift” the macroscopic
fields into the kinetic grid, by taking for new distribution fn

i a Maxwellian2, whose
moments are given by Un

i :

fn
i (v) := Mρni ,u

n
i ,T

n
i
(v), ∀v ∈ R

3.

Evolve the kinetic equation at point xi with initial condition fn
i to obtain fn+1

i ;

– Set Ωn+1
f := Ωn

f \Ki and Ωn+1
k := Ωn

k ∪Ki.

• In a kinetic cell Kj ⊂ Ωn
k , evaluate the criteria (23)-(24):

– If both are correct, evolve the kinetic equation at point xj with initial condition fn
i to

obtain fn+1
j ;

– In the other case, the regime is fluid, then project the kinetic distribution towards the
macroscopic fields, by setting

Un
j :=

∫

Rd

fn
j ϕ(v) dv, ϕ(v) =

(
1, v,

1

3ρnj
|v − un

j |2
)
.

Evolve the fluid equation at point xj with initial condition Un
j to obtain Un+1

j ;

– Set Ωn+1
k := Ωn

k \Kj and Ωn+1
f := Ωn

f ∪Ki.

It now remains to consider what happens between two cells of different types. Consider the
situation at time tn where the cells Ki−2 and Ki−1 are fluid, and the cells Ki and Ki+1 are kinetic
(as described in Figure 1).

Ki−2 Ki−1 Ki Ki+1

fn
iUn

i−2 Un
i−1 fn

i+1

KineticHydrodynamic

+ + + ++

Figure 1. Transition between fluid and kinetic cells.

2The proper way to do so since the velocity space is discrete is to consider discrete velocity Maxwellians, as
introduced by Berthelin, Tzavaras and Vasseur in [3].
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• To evolve fn
i with a finite volume method as described in Section 3.2, a stencil of two ghost

cells is needed on the left. Since we don’t have boundary conditions prescribed by the
problem between cells, we lift the hydrodynamic fields by setting

fn
i−1(v) := Mρni−1

,un
i−1

,Tn
i−1

(v), fn
i−2(v) := Mρni−2

,un
i−2

,Tn
i−2

(v), ∀v ∈ R
3;

• To evolve Un
i−1 with a finite volume method, a stencil of two ghost cells is needed on the

right. Similarly, we project the kinetic density by setting

Un
i :=

∫

Rd

fn
i

(
1, v,

1

3ρni
|v − un

i |2
)
dv, Un

i+1 :=

∫

Rd

fn
i+1

(
1, v,

1

3ρni+1

|v − un
i+1|2

)
dv,

and we match the hydrodynamic fluxes with the kinetic ones.

Remark 3 (Limitations of this approach). Each zone must be at least as wide as the stencil, and
the extensions to non-cartesian grids seems nontrivial.

4. Numerical Simulations

We take in all the simulations dx = 1. In particular, the moment realizability matrices Vεk are
diagonal. In the e.g. Navier-Stokes case, it is given by

VNS =




1− ε
µ

ρT
∂xu

x − ε2
κ2

ρ2T 3
(∂xT )

2 0 0

0 1 + ε
µ

ρT
∂xu

x 0

0 0 1 + ε
µ

ρT
∂xu

x




,

where u = (ux, uy, uz). We can then read its eigenvalues on its diagonal. The criterion for k = 0
for a fluid cell to be kinetic at the next iteration is then

(27)

∣∣∣∣ε
µ

ρT
∂xu

x + ε2
κ2

ρ2T 3
(∂xT )

2

∣∣∣∣ ≤ η0 or

∣∣∣∣ε
µ

ρT
∂xu

x

∣∣∣∣ ≤ η0.

Using the expression of the Burnett coefficients (15)-(16), we can easily write the same type or
criterion for the Navier-Stokes closure k = 1.

4.1. Test 1: Riemann problem. This test deals with the numerical solution of the non homoge-
neous 1D × 3D BGK equation (4). We present some results for one dimensional Riemann problem
and compare them with the numerical solution obtained by solving the full kinetic equation on a fine
mesh. We have computed an approximation for different Knudsen numbers from rarefied regime up
to the fluid limit and report the results for ε = 10−2 and 10−3.

More precisely, the initial data is given by

f in(x, v) = Mρ(x),u(x),T (x)(v), ∀x ∈ [−0.5, 0.5], v ∈ [−8, 8]3,

with

(ρ(x),u(x), T (x)) =

{
(1, 0, 0, 0, 1) if x < 0,

(0.125, 0, 0, 0, 0.25) if x ≥ 0.
;

On the one hand, in Figures 2 and 4, we plot the results obtained in the rarefied regime with
ε = 10−2, for the zeroth order model, namely the Euler dynamics. The kinetic reference solution
is computed with 200 × 128 × 32 × 21 cells in phase space, the fluid reference solution with 200
points whereas the hybrid scheme is used with 100 points in x and the size of the velocity grid
is 32 × 32 × 32 points. We observe that the fluid solution is far from the kinetic one, which was
expected since the Knudsen number is large. Nevertheless, the hybrid scheme behaves very nicely
in this case, detecting correctly the non-equilibrium zone and the solution is close to the kinetic one.
This error is mainly due to the application of the Euler equations for which the heat flux is zero
(hence some errors in this particular quantity, see Figure 4). Then, in Figures 3 and 5, we perform
the same simulations for the first order, Compressible Navier-Stokes (CNS) model. Although the
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Figure 2. Test 1 - Riemann problem with ε = 10−2 : Order 0 (Euler); Density,
mean velocity and temperature at times t = 0.05, 0.10 and 0.20.

fluid solution is still far from the kinetic one, we observe that the result of the kinetic solver is in
almost perfect agreement with the reference solution, even in large time. This can also be observed
in the values of the heat flux, which are close to the reference ones.

Concerning the computational times for the same configuration (Nx = 100 and Nv = 323),
the hybrid schemes, both zeroth and first order, are more efficient than the kinetic models since
the computational time are respectively 1.9 and 4.4 times faster, even for such large values of ε,
corresponding to the rarefied case. More details can be found in Table 1.
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Figure 3. Test 1 - Riemann problem with ε = 10−2 : Order 1 (CNS); Density,
mean velocity and temperature at times t = 0.05, 0.10 and 0.20.

Test Sod 10−2 Sod 10−3 Blast 10−2 Blast 5 · 10−3 Blast 10−3

Euler 0.03 0.03 0.02 0.02 0.02
CNS 0.08 0.09 0.1 0.1 0.11
BGK 113 120 160 161 158

Hybrid (Euler) 61.2 20.1 57 11 0.12
Hybrid (CNS) 25.6 4.9 23 18 3.3

Table 1. Comparison of the computational times (sec), t = 0.10, Nx = 100, Nv = 323.
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Figure 4. Test 1 - Riemann problem with ε = 10−2 : Order 0 (Euler); heat
flux at times t = 0.05, 0.10, 0.15 and 0.20.
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Figure 5. Test 1 - Riemann problem with ε = 10−2 : Order 1 (CNS); heat
flux at times t = 0.05, 0.10, 0.015 and 0.20.
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On the other hand, we also give the result of the computations close to the Euler limit (ε = 10−3)
using 100 space cells and 32 × 32 × 32 cells in velocity for the hybrid method. In this case, the
solution is very close to the hydrodynamic limit and the kinetic model applies only locally (for
instance around a discontinuity where the matrices VNS and VEuler differ). Once again, in the
Euler case, there is a very good agreement with the reference solution on the density, mean velocity
and temperature reported in Figures 6 and 8 (although some small error can be seen locally, specially
in the heat flux). Let us emphasize the the hybrid scheme is perfectly fitted to describe correctly
the time evolution of the heat flux which is zero for the Euler system whereas it fluctuates around
zero when the distribution function is not a Maxwellian. For this case, the region where the kinetic
models applies is rather small since ε ≪ 1 and the hybrid method is particularly efficient. Indeed
the computational time is 6 times faster than the full kinetic model for the same configuration. This
is even more striking for the first order, CNS case, depicted in Figures 7 and 9. In this simulation,
only one cell is kinetic in short time, and then the whole domain becomes fluid. The error is then
negligible (even for the heat flux). The computational gain becomes huge: the hybrid scheme is
24.5 times faster than the kinetic one. It becomes almost competitive with the fluid solver.

4.2. Test 2: Blast Wave. We now consider the case of a blast wave where the initial data is
chosen as

f in(x, v) = Mρ(x),u(x),T (x)(v), ∀x ∈ [−0.5, 0.5], v ∈ R
3,

with

(ρ(x),u(x), T (x)) =





(1, 1, 0, 0, 2) if x < −0.3,

(1, 0, 0, 0, 0.25) if − 0.3 ≤ x ≤ 0.3,

(1,−1, 0, 0, 2) if x ≥ 0.3.

;

Moreover, specular boundary conditions (α = 1 in the so-called Maxwellian boundary conditions
setting [6]) are considered in order to study wave reflections.

We report the numerical results with ε = 10−2 in Figures 10 - 13 at different time with a com-
putational domain in velocity [−7.5, 7.5]2. The hybrid scheme is used with 100 points in x and the
size of the velocity grid is 323 points. One the one hand, the solution obtained with the zeroth
order hybrid scheme is compared with ones obtained using a full kinetic model on a fine grid and
applying the Euler system. We still observe a good agreement between the solution given by the
hybrid method and the one obtained with the full kinetic model whereas the purely macroscopic
model does not give accurate results for large time t ≥ 0.1 (see the Euler case in Figure 10). The
hybrid scheme is quite accurate in the region where the heat flux differs from zero (Figure 12), which
confirms the consistency of the criteria described in section 3.3. We nevertheless observe some small
discrepancies in large time on these zones. These errors disappear almost completely when using
the first order correction (Figures 11 and 13), even in large time, in particular because the CNS
solver is quite close to the kinetic solution.

Concerning the computational time for the same configuration (Nx = 100 and Nv = 323), the
zeroth order hybrid scheme is more efficient than the kinetic models since the computational time
is 2.8 times faster, and the first order one is 7 time faster. These improvements are particularly
encouraging if we claim to construct an hybrid scheme based on the full Boltzmann operator in R

3
v

for which the computational complexity is much higher than the BGK operator.
On the other hand, we present in Figures 14 - 17 results in the fluid regime ε = 10−3. In that case,

both zeroth and first order hybrid scheme resolve very accurately the reference solution. The kinetic
zones are really small (only the boundary cells are kinetic), and we observe that it is enough for
the fluid solvers to achieve the correct result (even if the Euler solver is still far from the reference
solution and the heat flux is 0 everywhere). The gains in time here are really good, because the
Euler solver behave almost like a fluid one (gain of a factor 1250 compared to the kinetic solver),
and the CNS remains competitive, although the parabolic CFL condition has to be applied (gain
of a factor 48).
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Figure 6. Test 1 - Riemann problem with ε = 10−3 : Order 0 (Euler); Density,
mean velocity and temperature at times t = 0.05, 0.10 and 0.20.

4.3. Test 3: Far from Equilibrium, Variable Knudsen Number. This last numerical test
deals with the BGK operator where the initial data is far from the thermodynamical equilibrium
and when the Knudsen number ε varies with space. The initial condition is given by

f in(x, v) =
1

2

(
Mρ(x),u(x),T (x)(v) +Mρ(x),−u(x),T (x)(v)

)
,
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Figure 7. Test 1 - Riemann problem with ε = 10−3 : Order 1 (CNS); Density,
mean velocity and temperature at times t = 0.05, 0.10 and 0.20.

for x ∈ [−0.5, 0.5], v ∈ R
3 with

(ρ(x),u(x), T (x)) =

(
1 +

1

2
sin(πx),

3

4
, 0,

5 + 2 cos(2πx)

20

)
.

Moreover, the Knudsen number ε varies smoothly from zero to one as

ε(x) = 10−4 +
1

2
(arctan(1 + 30x) + arctan(1− 30x)) .
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Figure 8. Test 1 - Riemann problem with ε = 10−3 : Order 0 (Euler); heat
flux at times t = 0.05, 0.10, 0.15 and 0.20.
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Figure 9. Test 1 - Riemann problem with ε = 10−3 : Order 1 (CNS); heat
flux at times t = 0.05, 0.10, 0.15 and 0.20.
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Figure 10. Test 2 - Blast wave with ε = 10−2 : Order 0 (Euler); Density, mean
velocity and temperature at times t = 0.05, 0.15 and 0.35.

The hybrid scheme is used with 100 points in x and the size of the velocity grid is 32 × 32 × 32
points on the computational domain (−8, 8)3. This numerical test is particularly difficult since the
initial data is not at thermodynamical equilibrium and there is no hydrodynamic limit except in
the regions where the Knudsen number is small, that is for |x| ≥ 1/3. We compare our numerical
solution with the one obtained on a fine grid using the full kinetic model and the one given by solving
the compressible Navier-Stokes system. Once again the density, mean velocity and temperature are
well described and agree well with the solution corresponding to the kinetic model, even if the
fluid model is not correct. Indeed, the numerical solution of the fluid equations develops waves
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Figure 11. Test 2 - Blast wave with ε = 10−2 : Order 1 (CNS); Density, mean
velocity and temperature at times t = 0.05, 0.15 and 0.35.

propagating in the domain which does not correspond to the solution of the kinetic model (see
Figures 18 and 19). For such a configuration the hybrid method is 1.9 times faster than the full
kinetic solver.

5. Conclusion

We propose a simple hierarchy of hybrid method for solving the Boltzmann equation (or analogous
kinetic models) in various regimes. This method is based on two criteria. The first one is used to
pass from the macroscopic system to the kinetic equation and is strongly inspired by the works
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Figure 12. Test 2 - Blast wave with ε = 10−2 : Order 0 (Euler); heat flux at
times t = 0.05, 0.15, 0.25 and 0.35.
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Figure 13. Test 2 - Blast wave with ε = 10−2 : Order 1 (CNS); heat flux at
times t = 0.05, 0.15, 0.25 and 0.35.
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Figure 14. Test 2 - Blast wave with ε = 10−3 : Order 0 (Euler); Density, mean
velocity and temperature at times t = 0.05, 0.15 and 0.35.

of Levermore, Morokoff and Nadiga in [15]. It is based on a Chapman-Enskog expansion of the
distribution. This criterion (22) only depends on macroscopic quantities given by a closure of the
kinetic model, and does not require the evaluation of the distribution function. The second one is
used to pass from the kinetic equation to its corresponding hydrodynamical limit and it is based on
the comparison of the truncation of the Chapman-Enskog expansion (21) with the exact distribution
function with its hydrodynamical equilibrium (23) and the ratio ∆t/ε (24).
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Figure 15. Test 2 - Blast wave with ε = 10−3 : Order 1 (CNS); Density, mean
velocity and temperature at times t = 0.05, 0.15 and 0.35.
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Figure 16. Test 2 - Blast wave with ε = 10−3 : Order 0 (Euler); heat flux at
times t = 0.05, 0.15, 0.25 and 0.35.
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Figure 17. Test 2 - Blast wave with ε = 10−3 : Order 1 (CNS); heat flux at
times t = 0.05, 0.15, 0.25 and 0.35.
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Figure 18. Test 3 - Double bump initial data with variable Knudsen num-
ber : Order 1 (CNS); Density, mean velocity and temperature at times t = 0.10,
0.50 and 1.0.
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